

Relevance of Oxygen and Hydrogen Determination in Additive Manufacturing and Powder Recycling

Session 46, Powders for AM-Recycling

Dr. Peter Paplewski * Christian Zühlke

Bruker AXS GmbH, Elemental Analysis, Karlsruhe, Germany

IGCV

Max Lutter-Günther

Fraunhofer Research Institution for Casting, Composite and Processing Technology, Augsburg, Germany

Bruker Solutions for AM/PM Elemental and Structural Analysis

Relevance of Oxygen & Hydrogen Introduction

- Chemical reactions on the metal particle surface play an important role during:
 - Powder Production
 - Storage
 - Conditioning for AM
 - Handling in the machine
 - Post Processing / Heat Treatment
 - Powder Recycling

⇒ **Powder Aging** (degradation, oxidation, uptake, corrosion, ...)

Relevance of Oxygen & Hydrogen Effects of "gases in metals"

Laser Beam Melting is related to welding – layer by layer - and shares the same challenges

Oxygen

- unwanted, parasite element
- steel: causing ageing brittleness
- Titanium: degrades mech. properties (e.g. ductility)
- bulk (inclusions) vs. surface (oxidation)
- reactive metals like Ti, Mg, Al have high oxygen affinity

Hydrogen

- highly unwanted element
- causes harmful, complex embrittlement damages
- can be supplied during: welding, etching, annealing, corrosion for moisture

Relevance of Oxygen & Hydrogen Factors for Degradation

- Powder degradation will be faster:
 - the smaller the particles are (high specific surface)
 - the higher moisture / oxygen levels are
 - the higher the temperature is
 - the longer the exposition time is

Particle Size / µm	Oxygen / ppm	Hydrogen / ppm	
10 - 53	1640 🛉	68.2 🛉	
20 - 63	998	53.7	
40 - 100 🔸	772	38.1	

Correlation between particle size and O, H content on AlSi10Mg:

Relevance of Oxygen & Hydrogen Surface reaction with moisture

- AlSi10Mg reacts with ambient moisture
- Hydroxide layers are formed on the surface:

$2 \text{ AI} + 3 \text{ H}_2 \text{O} \longrightarrow$	Al ₂ O ₃ + 3 H ₂ alumina
$2 \text{ AI} + 4 \text{ H}_2 \text{O} \longrightarrow$	AIO(OH) + 3 H ₂ boehmite
2 AI + 6 H ₂ O →	2 AI(OH)₃ + 3 H₂ bayerite

"Caking" on AlSi10Mg powder due to crystal connection of neighboring particles

Hydroxide layer formation on AlSi10Mg (verified by FTIR)

Relevance of Oxygen & Hydrogen Effect on LBM Process and Quality

- New powder (A)
- Powder (B) aged: storage at high humidity and elevated temperatures
- Note: Powder (B) still shows unchanged fluidity

Sample specimen: A (left), B (right)

A: Density 99.5%

B: Density 96.5%

Relevance of Oxygen & Hydrogen Example: Spatter Formation

Origin

- 7.5 mg spatter material per g material fused
- Spatter end-up in powder bed

Oxygen Content [ppm] IGF, n=5

Oxide Layer Thickness

(XPS-measurement as Al_2O_3) Virgin powder: 27 nm Spatter: 35 nm

Spherical spatter, solidified in flight

5 mm

Relevance of Oxygen & Hydrogen How to determine O, N, H (and Ar)?

Graphite crucible on lower electrode

- Techniques like WD-XRF and OES cannot determine O, H, N or Ar
- Inert gas fusion (**IGF**) was applied in this study
 - A sample of any shape (powder, pieces, drillings, etc.) is weighed
 - The sample is fused inside a graphite crucible (up to 3000 dC) in a flow of high purity inert gas

$$M_{n} \{ O_{x}, N_{y}, H_{z} \}_{m} \xrightarrow{T >> \text{ m.p.}} n \mathbf{M} + m \{ x/2 O_{2} + y/2 N_{2} + z/2 H_{2} \}$$
Ti6Al4V test specimen
produced by LBM
$$O_{2} + \{ \mathbf{C} \} \xrightarrow{T > 1800 \circ \mathbf{C}} 2 \text{ CO} (+ \mathbf{CO}_{2})$$

$$(Boudouard Equilibrium)$$

Relevance of Oxygen & Hydrogen IGF: Temperature matters

Relevance of Oxygen & Hydrogen Characteristics of IGF

Inert gas fusion is:

- a volumetric method (entire specimen is analyzed)
- a relative method that requires calibration (CRM or gas dosing) ⇒ result traceability
- not limited in concentration ranges: high-ppb to 100%
- Fast (30s pre-cleaning of crucible, 60-90s measuring time)
- applicable to all inorganic solids (must be dry!)
- flexible by coupling a MS: Ar determination or isotopic tracers
- able to deliver kinetic information by applying heating rates (e.g. separation of oxides)

Relevance of Oxygen & Hydrogen CRMs for AM

F

F

LGC ARMI				
Iso Certificate of Analysis Certificate of Analysis IARM Fe316LP-18 Additive Manufacturing Powder (-270M+16µ) Stainless Steel 316L / UNS S31603 Certified Reference Material Certified Reference Material Certified Values listed in wt.% with associated uncertainties Al 0.006 ± 0.005 C 0.006 ± 0.001 Co 0.006 ± 0.003 Cr 17.9 ± 0.2 Cu 0.006 ± 0.001 Co 0.006 ± 0.003 Cr 17.9 ± 0.2 V 0.0002 S 0.011 ± 0.003 S 0.0041 ± 0.0002 S 0.0041 ± 0.0002 <th col<="" th=""><th>$\begin{array}{c} \text{Iso Certified : 9001 - 17025 - 17034} \\ \hline \textbf{Certificate of Analysis} \\ \textbf{LARM Ti64P-18} \\ \text{Additive Manufacturing Powder (-53/+16\mu) Titanium Alloy 6-4 / UNS R56400} \\ \hline \textbf{Certified Reference Material} \\ \hline \textbf{Certified Reference Material} \\ \hline \textbf{Mn} & \textbf{0.011} \pm 0.002 & \textbf{N} & \textbf{0.04} \pm 0.02 & \textbf{0} & \textbf{0.15} \pm 0.02 & \textbf{S} & \textbf{0.0014} \pm 0.0006 \\ \hline \textbf{Sn} & \textbf{0.008} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.011} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.018} \pm 0.001 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.04} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0014} \pm 0.0006 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.0018} & \textbf{0.0016} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.0018} & \textbf{0.0016} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} & \textbf{0.0011} & \textbf{V} & \textbf{0.0018} & \textbf{0.0018} & \textbf{0.0016} \\ \hline \textbf{Mn} & \textbf{0.0018} & \textbf{0.0011} & \textbf{V} & \textbf{0.0018}$</th><th>H 0.001 0.0012 0.0013 0.0014 0.0015 0.0016 0.002 0.0021 0.0021 0.004</th><th>0 0.0725 0.151 0.154 0.1562 0.1593 0.16 0.1605 0.167 0.186</th></th>	<th>$\begin{array}{c} \text{Iso Certified : 9001 - 17025 - 17034} \\ \hline \textbf{Certificate of Analysis} \\ \textbf{LARM Ti64P-18} \\ \text{Additive Manufacturing Powder (-53/+16\mu) Titanium Alloy 6-4 / UNS R56400} \\ \hline \textbf{Certified Reference Material} \\ \hline \textbf{Certified Reference Material} \\ \hline \textbf{Mn} & \textbf{0.011} \pm 0.002 & \textbf{N} & \textbf{0.04} \pm 0.02 & \textbf{0} & \textbf{0.15} \pm 0.02 & \textbf{S} & \textbf{0.0014} \pm 0.0006 \\ \hline \textbf{Sn} & \textbf{0.008} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.011} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.018} \pm 0.001 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.04} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0014} \pm 0.0006 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.0018} & \textbf{0.0016} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.0018} & \textbf{0.0016} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} & \textbf{0.0011} & \textbf{V} & \textbf{0.0018} & \textbf{0.0018} & \textbf{0.0016} \\ \hline \textbf{Mn} & \textbf{0.0018} & \textbf{0.0011} & \textbf{V} & \textbf{0.0018}$</th> <th>H 0.001 0.0012 0.0013 0.0014 0.0015 0.0016 0.002 0.0021 0.0021 0.004</th> <th>0 0.0725 0.151 0.154 0.1562 0.1593 0.16 0.1605 0.167 0.186</th>	$\begin{array}{c} \text{Iso Certified : 9001 - 17025 - 17034} \\ \hline \textbf{Certificate of Analysis} \\ \textbf{LARM Ti64P-18} \\ \text{Additive Manufacturing Powder (-53/+16\mu) Titanium Alloy 6-4 / UNS R56400} \\ \hline \textbf{Certified Reference Material} \\ \hline \textbf{Certified Reference Material} \\ \hline \textbf{Mn} & \textbf{0.011} \pm 0.002 & \textbf{N} & \textbf{0.04} \pm 0.02 & \textbf{0} & \textbf{0.15} \pm 0.02 & \textbf{S} & \textbf{0.0014} \pm 0.0006 \\ \hline \textbf{Sn} & \textbf{0.008} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.011} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.018} \pm 0.001 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{4.24} \pm 0.05 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.018} \pm 0.001 & \textbf{V} & \textbf{0.04} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0014} \pm 0.0006 & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.05} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.0018} & \textbf{0.0016} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} \pm 0.001 & \textbf{V} & \textbf{0.0018} & \textbf{0.0016} & \textbf{S} \\ \hline \textbf{Mn} & \textbf{0.0018} & \textbf{0.0011} & \textbf{V} & \textbf{0.0018} & \textbf{0.0018} & \textbf{0.0016} \\ \hline \textbf{Mn} & \textbf{0.0018} & \textbf{0.0011} & \textbf{V} & \textbf{0.0018} $	H 0.001 0.0012 0.0013 0.0014 0.0015 0.0016 0.002 0.0021 0.0021 0.004	0 0.0725 0.151 0.154 0.1562 0.1593 0.16 0.1605 0.167 0.186
SI 0.25±0.02 V 0.005±0.005		0.0018 0.0009 0.0018 0.0007	0.15 0.03 0.15 0.02	

Certified Values listed in wt.% with associated uncertainties

AI	0.49 ± 0.02	С	0.036 ± 0.003	Co	0.097 ± 0.006	Cr	19.6±0.2
Cu	0.018 ± 0.004	Fe	17.0 ± 0.3	Mn	0.026 ± 0.002	Мо	3.13 ± 0.04
Ν	0.010 ± 0.007	Nb	4.95 ± 0.08	Ni	53.6 ± 0.3	0	0.014 ± 0.002
Ρ	0.006 ± 0.003	S	0.0013 ± 0.0004	Si	0.036 ± 0.009	Та	0.006 ± 0.005
Ti	1.01 + 0.01	V	0.017 + 0.003	w	0 010 + 0 005		

Jernkontoret swerea KIMAB

Jernkontoret

JK 47A

Iron powder

Materials supplier: Höganäs Sweden AB

CERTI	FIED VALUE	ES - Mass cor	tent in 9
	0	N	C
MM	0.69	0.0062	0.370
C(95%)	0.02	0.0002	0.003

Relevance of Oxygen & Hydrogen Ar? \Rightarrow Process Gases Inclusions

- During the gas atomization, liquid metal is hit/"nebulized" by a jet of a process gas (argon or nitrogen)
- Impurities in the gas like moisture, oxygen, etc. can react
- Additionally, traces of the process gas remain in the particles:
 - Ti, Al, Mg and other reactive alloys react with nitrogen ⇒ argon is used as atomizing gas
 - Ar does not react but stays in the powder in form of entrapped closed porosity
 - Pores filled with Ar cause similar embrittlement like hydrogen but starting at much smaller levels: <100 ppb [1, 3]
 - Micro CT (µCT) can't tell whether pore is filled with Ar
 - Post-processing cannot remove a pore filled with gas [4]
- IGF coupled to a mass spectrometer allows ppb detection limits of argon

Relevance of Oxygen & Hydrogen Motivation

From the AM user perspective the powder metal market is complex and non-transparent:

- Manufacturers of AM machines offer their own powder
- Premium powder manufacturers
- Smaller primary metal manufacturers starting own powder productions

Concerning the chemical composition

- Alloying elements and material grade is given and specified (and often verified multiple times – although that is invariant during the process)
- Very seldom light elements like C, S and O, H are listed
- Hydrogen and Argon are ignored (except: NADCAP)
- No quality threshold values are defined

A lack of knowledge currently prevails regarding initial O,N,H contents of commercially available powders for powder bed fusion processes

Relevance of Oxygen & Hydrogen AlSi10Mg – Series I

- Five different lots of AlSi10Mg from 2 years
- Same supplier/manufacturer of LBM-machine
- Identical specification (but no O,N,H given in certificate)
- Fresh powder
- n=5, one STD in brackets as measure for homogeneity

Lot (year)	Oxygen / ppm	Nitrogen / ppm	Hydrogen / ppm
A (2016)	1323 (187)	55 (6)	56 (4)
B (2016)	1730 (45)	42 (14)	57 (3)
C (2017)	1074 (71)	66 (24)	56 (6)
D (2017)	1378 (100)	55 (9)	<mark>64</mark> (3)
E (2017)	937 (18)	48 (14)	46 (3)

Relevance of Oxygen & Hydrogen AlSi10Mg – Series II

- Identical specification but no O,N,H given
- Five different suppliers, same year
- Fresh powder
- n=5, one STD in brackets as measure for homogeneity

Supplier	Oxygen / ppm	Nitrogen / ppm	Hydrogen / ppm	Comment
1	1378 (100)	55 (9)	64 (3)	
2	1106 (79)	25 (9)	69 (4)	
3	<mark>2594</mark> (119)	41 (9)	<mark>94</mark> (6)	obtrusive in AM
4	1004 (135)	28 (9)	47 (2)	
5	1328 (43)	17 (6)	62 (5)	

Best quality AlSi10Mg \Rightarrow O: \leq 1000 ppm, H: \sim 50 ppm

Relevance of Oxygen & Hydrogen Series III – Other Metals

n=5, one STD in brackets as measure for homogeneity •

Material	Description	O / ppm	N / ppm	H / ppm	Questions
Steel 1.7131 16MnCr5	low alloyed steel	1474 (133)	92 (3)	12 (1)	
SS316L	316L low carbon stainless steel	476 (46)	112 (5)	10 (1)	Ar atomized?
SS316L	316L low carbon stainless steel	543 (43)	675 (6)	11 (1)	N ₂ atomized?
1.2709	Tool steel, highly alloyed	504 (16)	83 (2)	14 (3)	
Inconel 718		<mark>358</mark> (29)	<mark>330</mark> (6)	<mark>59</mark> (4)	???
Inconel 718		175 (11)	191 (3)	4.7 (0.2)	
Ni-Base Pwd.	comparable to Inconel	267 (19)	78 (3)	14 (1)	
18Ni300	Steel with high Ni	403 (23)	212 (1)	18 (3)	
CuCr1Zr	90%Cu, "Zraged"	<mark>2072</mark> (123)	24 (3)	13 (1)	green Laser req.
October 16, 2019 17					

Relevance of Oxygen & Hydrogen Series IV: Ti-6Al-4V

Typical values for Ti6Al4V analyzed so far (fresh powder)

- O: 950 1250 ppm (but up to 3600 ppm in specimen) ASTM limit grade 1: <1800 ppm
- N: 150 350 ppm
- **H**: 13 220 ppm
- Ar: 0.3 1.3 ppm (limit in HIP-AM: 0.1 ppm)

Relevance of Oxygen & Hydrogen Conclusions

- Oxygen and Hydrogen are the most critical elements for quality and costs (e.g. recycling)
- To optimize the process and find the best compromise, Process- and Quality-Control of these elements is indicated
- Metal powder produced by gas atomization infiltrates process gases. Wish: The contaminants shall be specified and also tested in the final product (until experience values for AM are set)
- A high level of care concerning the used process gases and especially their impurities, like **moisture**, is required to run a robust AM process with highest quality
- Inert gas fusion is a fast, effective and readily available analytical method for process and quality control in powder metallurgical processes

Relevance of Oxygen & Hydrogen

Thank you for your attention!

References

[1] B. Hofer, F. Bigolin, M. Hamentgen, H. Stremming, C. Zühlke, "Measuring the gas content in HIP components and impurities in the argon- and chemical reacted gas used to compacting near net shape parts and castings. Presentation of the measurement technique", Session 215, HIP 2014 conference (Stockholm, Sweden)

[2] P. J. Mohr, B. N. Taylor, D. B. Newell; "CODATA recommended values of the fundamental physical constants - 2010"; National Institute of Standards and Technology, USA, <u>http://physics.nist.gov/constants</u>

[3] P. Mellin, M. Östlund, W. Fredriksson, C. Pellegrini, H. Blom, O. Björnberg, A. Strondl; "Detecting Argon Trapped In Reference Samples Made By Hot Isostatic Pressing", WorldPM 2016 (Hamburg, Germany), WP1603294934

[4] C. Schaak, W. Tillmann, M. Schaper, M. E. Aydinöz; "Process Gas Infiltration in Inconel 718 Samples during SLM Processing", RTeJournal - Fachforum für Rapid Technologie, Vol. 2016 (2016), Germany